### Assignment Instructions/ Description

QuestionImage transcription textO

13.37 Xr13-37 Studies have shown that tired chil-

dren have trouble learning because neurons

become incapable of forming new synaptic con-

nections that are necessary to encode memory.

The problem is that the school day starts too

early. Awakened at dawn, teenage brains are still

releasing melatonin, which makes them sleepy.

Several years ago, Edina, Minnesota, changed

its high school start from 7:25 A.M. to 8:30 A.M.

The SAT scores for a random sample of students

taken before the change and a random sample of

SAT scores after the change were recorded. Can

we infer from the data that SAT scores increased

after the change in the school start time?

O

O... Show moreMethod to use:ï¿½Image transcription textStep 1: Testing for Equal or Different variances

Hypothesis testing

Step 1: State hypothesis in plain English

Step 6: Select test statistic

Ho: the variances are

assumed to be equal

Fo =

Ha: The variance of the two populations can be

assumed to be different

Step 7: Critical value

Step 2: Select the statistical measure

F-critical (.05, nb, na) =

1.205

F-test Ratio of the variances Step 8: Compute the test statistic

Fo =

1.14

Step 3: One-side or two-side?

p(Fo) =

0.121

One- sided

Step 4: State hypothesis math

GH

Step 9: Compare the test calculated with the critical value

Fail to reject null if Fo < Foritial or p(Fo)> alpha

Step 5: Level of test

Ha:

1.14 <1.21

fail to reject HO

alpha =0.05

.121>.05

fail to reject HO

F: 06 102

Step 10: Write conclusion

F-Test Two-Sample for Variances

There is insufficient evidence to conclude that the population variances of SAT scores before and after the change are significantly different.

Step 2: Testing for the means

Mean

496.87

511.29

Hypothesis testing

Variance

5443 4769.7

Step 1: State hypothesis in plain English

Step 6: Select test statistic

Observat

355

288

Jull is that the change in start times did not

Xa - Xb - (Ha - Up)

354

287

ead to any improvements in mean SAT scores

to

F

1. 1412

Alternative, is that the later start time led to

1 1

PIF<=f)0 0.1215

mprovements in mean SAT scores

Spuna

F Critical

1.2045

Step 7: Critical value

t-Test: Two-Sample Assuming Equal Variances

Step 2: Select the statistical measure

t-critical 1.647

mu_after - mu_before

Mean SAT score after changes - mean SAT

Step 8: Compute the test statistic

Mean

score before the changes

to =

2.53

Variance

Step 3: One-side or two-side?

p(to) =

0.0057

Observations

One-Sided

Pooled Variance

Step 9: Compare the test calculated with the critical value

Hypothesized Mean Difference

Step 4: State hypothesis math

Reject null if to > teritial or pltokalpha

Ho: Up 2 Ha

2.53 >1.647

reject HO

I Stat

PIT<=)one-tail

Ha: HD - Ha

0057 <.05

reject HO

Critical one-tail

Step 5: Level of test

PIT<=t) two-tail

alpha = 0.05

Step 10: Write conclusion

t Critical two-tail

There is sufficient evidence to conclude that SAT scores increased after the change in the schedule occurred.... Show morePlease solve the problem exactly as it is listed, using the ten step method. Where there are figures, that is either data analysis or JMP - if you know how to use those tools, please include those computations. I am not sure the answers I have provided are correct so please check those.ï¿½ï¿½Data to use:BeforeAfter545590462467398565425416453458572651443462532479521494380449486407488471359545559461398541497573619534563358511471532459463452292397424431384472352481421539462458415501409721484683487497364633415515564436473417554554366520502504619429524532600456573549425586601494509432474512479502517502539363610641600512606493660395531485545566453555563555421553438586310616614489496492403486530538469528510558554569463587423544538478528482554509375506362633607404434571384532678504530495451541512468459499625562437529434369490578494397481601437520447482514554488467458335524546476514478586490492512606507504504615544542614435423467405530552463493495557526453562547633698448502387663492439579376469455543614681624483634492632495474560433529537498584594520516587457420557445485499508530590497497522504421524346434557503574431505559437568512500459604441546477526469516467530398505535441446420591614607424429603538567572540518474463399493559418559535518583512494526572422492540400431449376468445540515402590514617646681441606522518526523425520420547481466501513606378611512454473531576388569579659396432486467616497600426488553672512442483441476518445466600505389499584569658489493405406503457583629505482584578355614461541671513454549298419530507339536478479437528436437623534468540564483498456451546495481438457574671472499567438447564476461426615414507514444413458379415461447518502490582551558365553423527569512462454344552421572683644548552495404467510525512528383534464435440446555481468432611564451426518435498582531470599453455553441565534544580571443428621479417439544482530540602612491495463558474498409536446526459546424420420531434375370393439535488441542454471473563515565650445457609466634463659528515495594584564362493583391547623461ï¿½538ï¿½501ï¿½548ï¿½528ï¿½503ï¿½582ï¿½487ï¿½422ï¿½541ï¿½521ï¿½461ï¿½432ï¿½595ï¿½554ï¿½404ï¿½457ï¿½584ï¿½601ï¿½574ï¿½488ï¿½487ï¿½561ï¿½542ï¿½517ï¿½610ï¿½535ï¿½363ï¿½501ï¿½436ï¿½464ï¿½499ï¿½492ï¿½580ï¿½584ï¿½584ï¿½469ï¿½499ï¿½492ï¿½563ï¿½447ï¿½413ï¿½470ï¿½489ï¿½451ï¿½409ï¿½676ï¿½479ï¿½429ï¿½486ï¿½564ï¿½486ï¿½486ï¿½547ï¿½401ï¿½454ï¿½478ï¿½616ï¿½439ï¿½451ï¿½438ï¿½646ï¿½462ï¿½621ï¿½466ï¿½494ï¿½467ï¿½